Futurecom faz parte da divisão Informa Markets da Informa PLC

Este site é operado por uma empresa ou empresas de propriedade da Informa PLC e todos os direitos autorais residem com eles. A sede da Informa PLC é 5 Howick Place, Londres SW1P 1WG. Registrado na Inglaterra e no País de Gales. Número 8860726.

Machine learning: a evolução da Inteligência Artificial

Machine learning.png
Deve ocorrer nos próximos anos uma evolução da aprendizagem supervisionada das máquinas, por conta do aperfeiçoamento da lógica computacional.

O machine learning é uma das tecnologias que estão ganhando espaço em nossas vidas sem nem mesmo nos darmos conta disso. Quando vemos, estamos usando soluções com esse recurso e nem percebemos. Inclusive, é bem provável que você já tenha “ensinado” alguma máquina, sabia?

Como o próprio nome, que quando traduzido português significa “aprendizado da máquina”, sugere, o machine learning é um conceito relacionado à Inteligência Artificial (IA).

Mas, será que as máquinas realmente conseguem aprender coisas novas, assim como os humanos? Conversamos sobre esse tema com o Marcelo Jose Szewczyk, que é mestre em Tecnologias da Inteligência e Design Digital e professor do Senac EAD. Confira mais abaixo!

A diferença entre Inteligência Artificial e machine learning

Antes de tudo, é importante que você tenha em mente os conceitos de Inteligência Artificial e machine learning.

Szewczyk define a inteligência artificial como: “um ramo da Tecnologia da Informação (TI) que se propõe a elaborar sistemas e dispositivos que procuram simular capacidades humanas, tais como: ler, escutar, falar, ver, analisar, tomar decisões, resolver problemas ou controlar algo”.

O machine learning, por sua vez, é definido pelo professor como um termo utilizado para as tecnologias que permitem fornecer dados para sistemas de informação categorizados como de inteligência artificial.

Ou seja, o machine learning pode ser considerado uma evolução da inteligência artificial, que alimentada ou treinada por dados, consegue aprender determinadas funções.

O funcionamento dos recursos de machine learning

No que se refere ao funcionamento dos recursos de machine learning, Szewczyk explica que para cada tipo de inteligência artificial há uma lógica própria. Porém, há duas metodologias principais: a aprendizagem supervisionada e a aprendizagem não-supervisionada.

Sobre a aprendizagem supervisionada, o professor diz: “Ocorre quando há o suporte de uma pessoa que fornece os dados e respostas, suportando o aprendizado do sistema. Como exemplo, as pessoas que alimentam e validam os sistemas de chatbot com perguntas e respostas. A partir desses dados iniciais, os sistemas de IA podem construir lógica para dados de características semelhantes”.

Já sobre a aprendizagem não-supervisionada, Szewczyk explica que: "Nessa arquitetura, o sistema recebe dados e procura analisar os mesmos de forma autônoma, aprendendo com eles. Como exemplo, sistemas analíticos com IA podem processar grandes volumes de dados de genoma e identificar a correlação entre certas combinações de genes e características físicas ou tendência”.

Benefícios do machine learning para a sociedade

São inúmeros os benefícios que as tecnologias de machine learning estão nos trazendo como sociedade. Os recursos de aprendizagem para máquina já trazem resultados expressivos em diversos setores como na saúde, na agricultura, no atendimento a clientes etc.

“Na saúde, está sendo aplicado de forma intensa na análise de doenças. No clima, na medição e previsão de eventos. Na agricultura e pecuária, no monitoramento e planejamento mais assertivo, aumentando a produtividade e qualidade”, exemplifica Szewczyk.

Tendências para o futuro do machine learning

Questionado sobre as tendências para o futuro do machine learning, Szewczyk disse que deve ocorrer nos próximos anos uma evolução da aprendizagem supervisionada das máquinas, por conta do aperfeiçoamento da lógica computacional.

O professor também acredita que o cenário trazido pela internet 5G favorecerá o poder computacional, fazendo que novas variedades e um maior número de componentes e aparelhos conectados possam gerar dados para alimentar as tecnologias de machine learning.

Outra tecnologia que se relaciona com a inteligência artificial é o RPA. Saiba mais em nosso artigo que explica como esses recursos se relacionam e se beneficiam. Boa leitura!

Ocultar comentários
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publicar